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Semantic segmentation of remote sensing images using deep networks
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Figure 1: Residual correction on two SegNets

Semantic segmentation of aerial images
1. Sliding window over the high resolution tile
2. Dense prediction using a Fully Convolutional Network
3. Agregation over the high resolution tile

Implementation
▶ SegNet architecture [1] trained by Stochastic Gradient Descent

Challenge
▶Data fusion : how to fuse optical and Lidar data ?

Our method
▶A dual stream architecture with a residual correction module inspired by
signal processing theory.

ISPRS Vaihingen Dataset

ISPRS 2D Semantic Labeling Challenge (Vaihingen) [6]
▶High resolution tiles (2300× 2300px, 12.5 cm per pixel)
▶Optical data: Infra-red/Red/Green (IRRG)
▶ Lidar data: Digital Surface Model (DSM)
▶Dense ground truth with 6 classes

+normalized DSM [3] (NDSM) and vegetation index (NDVI)

Data fusion with residual correction

Naive data fusion
▶Dual stream [2] SegNet trained on IRRG and composite (DSM/NDSM/NDVI)
▶ Fusion by averaging the prediction maps: +0.4% accuracy w.r.t IRRG only

Residual correction
▶Residual correction based on a dual-stream SegNet
▶Use a residual network to merge the predictions, inspired by signal correction
techniques to improve noisy operations (e.g. averaging uncertain predictions)

▶ Fusion by residual correction: +0.8% accuracy compared to IRRG only
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Pirrg = Pgt + εirrg

SegNet
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Composite prediction

Pcomp = Pgt + εcomp
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Effect on selected patches

IRRG data Composite data IRRG data Composite data

IRRG prediction Composite prediction IRRG prediction Composite prediction

Fusion (network) Ground truth Fusion (network) Ground truth

Results

Method imp surf building low veg tree car Accuracy
FCN (“UZ_1”) 89.2% 92.5% 81.6% 86.9% 57.3% 87.3%

CNN + RF + CRF [5] 89.5% 93.2% 82.3% 88.2% 63.3% 88.0%
FCN [4] 90.3% 92.3% 82.5% 89.5% 76.3% 88.5%

FCN + RF + CRF (“DST_2”) 90.5% 93.7% 83.4% 89.2% 72.6% 89.1%
SegNet++ 91.5% 94.3% 82.7% 89.3% 85.7% 89.4%

Segnet++ w/ fusion 91.0% 94.5% 84.4% 89.9% 77.8% 89.8%

IRRG data “SVL”[3] RF + CRF Segnet++ Segnet++ w/ fusion
(white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: cars)

Conclusion

▶Dual stream SegNet improves classification accuracy of Earth Observation
images thanks to fusion of optical and Lidar data by residual correction

▶Do-it-yourself with our code and pre-trained models:
https://github.com/nshaud/DeepNetsForEO


