FUSION OF HETEROGENEOUS DATA IN CONVOLUTIONAL NETWORKS FOR URBAN SEMANTIC LABELING

¹ONERA, The French Aerospace Lab, F-91761 Palaiseau, France ² Univ. Bretagne-Sud, UMR 6074, IRISA, F-56000 Vannes, France

Semantic segmentation of remote sensing images using deep networks

Semantic segmentation of aerial images

1. Sliding window over the high resolution tile 2. Dense prediction using a Fully Convolutional Network 3. Agregation over the high resolution tile

Implementation

SegNet architecture [1] trained by Stochastic Gradient Descent

Challenge Data fusion : how to fuse optical and Lidar data ?

Figure 1: Residual correction on two SegNets

Our method

> A dual stream architecture with a **residual correction** module inspired by signal processing theory.

ISPRS Vaihingen Dataset

ONERA

THE FRENCH AEROSPACE LAB

ISPRS 2D Semantic Labeling Challenge (Vaihingen) [6] \blacktriangleright High resolution tiles (2300 \times 2300px, 12.5 cm per pixel)

- Optical data: Infra-red/Red/Green (IRRG)
- Lidar data: Digital Surface Model (DSM)
- Dense ground truth with 6 classes
- + normalized DSM [3] (NDSM) and vegetation index (NDVI)

Data fusion with residual correction

Naive data fusion

Effect on selected patches

Dual stream [2] **SegNet** trained on IRRG and composite (DSM/NDSM/NDVI) Fusion by averaging the prediction maps: +0.4% accuracy w.r.t IRRG only

Residual correction

- Residual correction based on a dual-stream SegNet
- Use a residual network to merge the predictions, inspired by signal correction **techniques** to improve noisy operations (e.g. averaging uncertain predictions)
- Fusion by residual correction: +0.8% accuracy compared to IRRG only

Results

Method	imp surf	building	low veg	tree	car	Accuracy
FCN ("UZ_1")	89.2%	92.5%	81.6%	86.9%	57.3%	87.3%
CNN + RF + CRF [5]	89.5%	93.2%	82.3%	88.2%	63.3%	88.0%
FCN [4]	90.3%	92.3%	82.5%	89.5%	76.3%	88.5%
FCN + RF + CRF ("DST_2")	90.5%	93.7%	83.4%	89.2%	72.6%	89.1%
SegNet++	91.5 %	94.3%	82.7%	89.3%	85.7 %	89.4%
Segnet++ w/ fusion	91.0%	94.5 %	84.4 %	89.9 %	77.8%	89.8 %

References

[1] V. Badrinarayanan, Alex Kendall, and Roberto Cipolla. "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation". In: *arXiv preprint arXiv:1511.00561* (2015).

[2] A. Eitel et al. "Multimodal deep learning for robust RGB-D object recognition". In: Proceedings of the International Conference on Intelligent Robots and Systems. IEEE, 2015.

- [3] Markus Gerke. Use of the Stair Vision Library within the ISPRS 2D Semantic Labeling Benchmark (Vaihingen). Tech. rep. International Institute for Geo-Information Science and Earth Observation, 2015.
- [4] D. Marmanis et al. "Semantic Segmentation of Aerial Images with an Ensemble of CNNs". In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 3 (2016).
- [5] S. Paisitkriangkrai et al. "Effective semantic pixel labelling with convolutional networks and Conditional Random Fields". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015.
- [6] F. Rottensteiner et al. "The ISPRS benchmark on urban object classification and 3D building reconstruction". In: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 1 (2012).

The Vaihingen data set was provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF). Nicolas Audebert's work is supported by the Total-ONERA research project NAOMI. The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-**TOTAL** 13-JS02-0005-01 (Asterix project).

(white: roads, blue: buildings, cyan: low vegetation, green: trees, yellow: cars)

- **Dual stream SegNet** improves classification accuracy of Earth Observation images thanks to **fusion of optical and Lidar** data by **residual correction**
- **Do-it-yourself** with our code and pre-trained models:

https://github.com/nshaud/DeepNetsForEO