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Automated semantic semantic mapping Fusing optical and geographic data

Heterogeneous data sources can be processed parallely and fused to im-
orove the semantic mapping [3], [4]. The FuseNet model [5] is here used to T
learn jointly from RGB images and OpenStreetMap crowdsourced annota- RGB only
tions. |
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iteration 10,000 20,000 50,000 80,000 120,000

/ 7 The model converges faster using OpenStreetMap data as it can focus on the
harder part of the RGB data. FuseNet reaches the same accuracy as the RGB
SegNet with 25% less iterations and a mean loss of 0.39 vs. 0.45 on the test
set, which indicates better generalization abilities.
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Using Earth Observation data for:

» Urban mapping: buildings, roads, vehicles, vegetation...
» Large-scale mapping: water bodies, agricultural areas, urban monitoring...
» Object detection: large vehicles, anormal vegetation...

Machine learning has proved itself useful:

» On optical aerial and satellite images S0 5 Pre-processing OpenStreetMap data
» Using deep convolutional neural networks

» By mixing heterogeneous data, including geographical priors

The geo-information can be rasterized either
as sparse binary map or as a dense distance
map. Experiments show that binary informa-
tion Is sufficient, as convolutional layers will
propagate the information.

Deep learning

Encoder Decoder
conv + BN + ReLU + pooling  upsampling + conv + BN + ReLUl]

Convolutional Neural Networks (CNN) :
» State-of-the-art for semantic segmentation
» Excellent results for road mapping from aerial images [1]

Conclusion

» We use deep neural networks to learn semantic mapping of large areas at
multiple scales.

» Data fusion allows us to learn jointly from RGB images and structured geo-
Information from OpenStreetMap.

» Source code and pre-trained models:

Fully Convolutional Networks for remote sensing data

Results

» FCN preserve the 2D spatial structure of the data
» Perform a dense pixel-wise classification
» Capture spatial relationships between pixels

Comparison on the ISPRS Potsdam aerial images dataset

Methode Roads Buildings Low veg. Trees Vehicles Accuracy

RF IRRGB 71.0 % 79.7 % 7/131%  59.4% 58.8 % 74.2 %
SegNet RGB  93.0% 929% 85.0% 851% 951 % 89.7 %
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e https://github.com/nshaud/DeepNetsForEQ

RF IRRGB+OSM  85.6 % 2.4% 73.8% 595% 67.6 % 80.9%
] v CR RGB+OSM  93.9% 928% 851% 85.2% 95.8 % 90.6 %
FuseNet 953% 959% 863% 851% 96.8% 923 %
i i — the largest Improvements are obtained on the buildings and roads References
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SegNet architecture, designed for autonomous vehicles and adapted to remote sensing [2]
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IRRGB prediction (RF)  RGB prediction (egNet)

Example of a predicted semantic map on the ISPRS Potsdam dataset.

RGB input RGB + OSM prediction Ground truth

(white: roads, blue: buildings, cyan: low vegetation, green: trees, . vehicles, red: clutter)
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that aims to develop novel remote sensing techniques for industrial applications.
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