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Context

Remote sensing

Aerial and satellite images :
- huge quantities of data
- heterogeneous sensors (RGB, SAR, Lidar, . . . )
- multiscale (vehicles, buildings, . . . )

Deep learning

Deep convolutional neural networks (CNN) :
- Artificial neural networks : statistical model for machine learning
- CNN (convolutional neural networks) = state-of-the-art for computer vision
- Powerful models for classification of RGB data (AlexNet, GoogLeNet, ...)

LeNet architecture from ”Gradient-Based Learning Applied to Document Recognition”, LeCun Y. et al (1998)

⇒ Can we extend deep networks models for Earth Observation ?
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Semantic labeling framework

Classification pipeline

4 steps : (i) Preprocessing - unsupervised segmentation (sliding window/superpixels) ⇒ (ii) feature extraction using a deep CNN (deep features) on each segmented
patch ⇒ (iii) linear SVM classification (one-vs-all) ⇒ (iv) semantic map reconstruction

The CNN is trained for object classification. No fine-tuning is required.
— We extract the truncated output of the CNN (before the softmax classifier)
— Projects into the CNN representation space: projection : Rw * h * c 7→ R1000

— The deep features are an efficient and compact descriptor of the image
— We concatenate several representations (from different scales and different

sensors) into one vector before classification

The linear SVM classifier separates the representation space into hyperplanes :
— Defines a classification function : classify : R1000 7→ [0..k], k number of classes
— Applied on the deep features : prediction = classify(projection(input))
— Requires supervised training

Choosing a segmentation algorithm

Classification performance vs. segmentation algorithm

Preprocessing MRS HSEG SLIC1 LSC1 Quickshift1 SW2

Accuracy (%) 80.53 79.56 82.20 82.45 82.05 81.22
F1 car 0.56 0.54 0.54 0.58 0.52 0.53

1 : superpixel based algorithms
2 : sliding window baseline

⇒ Superpixel algorithms achieve better overall accuracy and are competitive on small object labeling (cars).

Future work

Integrated end-to-end network for segmentation :
Fully Convolutional Networks (Long et al., 2015) are a promising architecture to perform
end-to-end supervised learning on segmentation tasks.
⇒No need for unsupervised superpixel preprocessing
⇒Full backpropagation learning

Multisource learning and data fusion :
Vision deep networks assume RGB data : only 3 channels
⇒Can we extend this to 4 colour channels using infrared information ?
⇒Can we add a 4th channel with different properties, e.g. the elevation ?
⇒Can we generalize CNN to deal with multispectral data ? With hyperspectral data ?


