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Abstract—In this work we propose a novel approach to
classify aerial images with structured predictors. They get high
performances by encoding the contextual information that exists
around a region of interest. More precisely, we learn a graph
model that takes into account the structure existing between
adjacent regions (or superpixels) belonging to various categories
with a Structural Support Vector Machine. The whole image
classification task is broken down in multiple local subtasks so
that we can deal with large amounts of regions (more than 100k).

I. INTRODUCTION AND PREVIOUS WORKS

A. Introduction

This work focuses on semantic labeling of aerial images.
Nowadays more and more images captured by aerial or
satellite systems become available. For example the Sentinel
satellites collect more than 2To of images a day. The spatial
resolution of these images vary between 300 meters to few
centimeters. Manually analyzing this amount of data would
take a lot of time and manpower: this is why we want to
automatically analyze these images. Our goal is to automati-
cally classify all the pixels of an image into several predefined
categories. The task of segmenting and labeling Very High
Resolution (VHR) imagery is one of the most active research
axes in the remote sensing community [1], [2], [3], [4], [5], [6]
as it is essential for a wide range of activities like deforestation
analysis or urban modeling. The standard approach consists in
extracting a feature descriptor on several regions of the images
then learning a model over the features in order to predict the
category of the region of interest. Our approach is based on the
idea that we can enrich the description of a region of interest
with more information from the image. By incorporating in
the model information about the neighborhood of the regions
of interest we can improve the recognition abilitiy of a model
and then improve its predictions. In this paper we show that
even novel and state-of-the-art approaches like deep neural
networks (AlexNet [7]) can be improved if we extract useful
contextual information of the neighborhood of the region of
interest. To this aim we learn the pattern which exists in the
local neighborhood structure using a graph representation and
a Structural Support Vector Machine (SSVM) framework.

B. Overview

Recently a new state of the art in semantic labeling has
been established with deep neural networks. Such networks

Fig. 1: Overview our method to model local relations between
supepixels. For a superpixel of interest we extract a local graph
of relations that will be used to make a prediction. The node
of interest is the node in red and the neighbor nodes are in
green. We model interactions between a node of interest and
the neighbor nodes to improve the prediction.

(for example AlexNet) are known to be very effective when
it comes to extract a powerful representation of the content
of an image, even when trained on general purpose datasets
[5]. We use two kinds of setup based on AlexNet as our
baseline algorithms. The first one compute features on small
patches centered on the superpixels while the second one uses
quite larger patches which include more context. In both cases
feature descriptors are compute on the patches using AlexNet
and used to train a multiclass Linear Support Vector Machine
(SVM).

Our approach builds on the small patch baseline but more-
over encodes the context using higher order information. In an
image, some categories of objects are more likely to appear
next to other categories of objects (cars are more likely to
appear on a road than on a tree). Our method proposes to
model the structure that exists between differents regions in the
image and to learn a contextual model that take into account
the local interactions between the regions to predict a category.
We model the local interactions between regions using a graph
structure. The nodes of the graph are the feature vectors of
the region of interest. Using a graph structure allows to add
extra information on the edges which will be useful to model
the interactions between the nodes. To this effect we define a
contextual feature which captures the relative positions of the
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regions that lie below a given radius. Locally for each region
we regularize the local graph computed from single classifier
using SSVM which is an extension of the popular SVM. The
SSVM framework then predicts new classes for all regions of
the graph.

II. CONTEXTUAL MODELING

A. Baseline classifier

Our baseline classifiers predict a label for each superpixel.
The visual information associated with a superpixel is taken
from the patch centered on it. It will be processed by the
deep network. We use the following pipeline for semantic
segmentation:

1) Divide the image into small regions of interest (superpix-
els) using the Simple Linear Iterative Clustering (SLIC)
algorithm [8]

2) For a region of interested extract a patch of size (N ×
N), N ∈ {32, 64} centered on the superpixel.

3) Resize the patch to 228×228 and process them through
AlexNet.

We use theses features in order to train a linear multiclass
SVM. As a groundtruth we have label maps where all the pix-
els are assigned to a category. One issue with using superpixels
as training samples is that superpixels can incorporate pixels
from two differents categories. To deal with this problem we
perform a majority vote according to the groundtruth to label
a superpixel. The resulting semantic map is obtained thanks
to the prediction of the SVM.

B. Structural context

Usually the region of interest (for instance a patch) we want
to classify are very small parts of a semantic object. Looking
only at patch level shadows or unusual appearance may lead
to misclassifications. Introducing visual information from the
neighboorhood allows to reduce uncertainty about the patch.

1) Graph model: The second contextual information we
use in this work is the structure of the local interactions
of regions of the image. The underlying assumption is that
superpixels surrounding a region of interest have a structure
that can be learnt. One natural datastructure to model structural
relationship between several elements is a graph model. Using
a graph to model interactions between superpixels allows us
to incorporate extra contextual information in the graph. We
construct the graphs that capture interactions between regions
of an image in the following manner:

1) Divide the image into small regions using the SLIC
algorithm [8]

2) For a region of interested extract a patch of size (32×32)
centered on the superpixel.

3) Create the nodes of the graph using the features
4) Create edges between nodes where the distance between

the centroids is less than a radius r
5) For each edges in the graph compute a feature of context

composed of the distance ρ between the centroid and
the angle θ which is the relative orientation between the
superpixel centroids.

The result for each image is a set of nodes V and a set of
undirected edges E . A graph G = (V, E) is then associated
with each image of the training set.

2) Structural model for context: Our model is composed
by unary features (describing the nodes) and pairwise features
(contextual feature between two nodes) which jointly describe
interactions between input and output variables. For training,
we use a set of N images associated with their label maps.
From the images, we extract graph models as explained in
section II-B1. We then extract a set of local relation graphs
that we use as training samples X = {xn}Nn=1 with the cor-
responding groundtruth annotations Y = {yn}Nn=1 generated
from the label maps. The specificity of the SSVM framework
is that the output labels Y are structured, which means they
are graph of classes and not single class values. A target yn

is a set a labels yi where each label corresponds to a node xi.
The labeling of a region of interest is found by minimizing
the following energy function:

E(x, y, ;w) =
∑

i∈V
φi(yi;w

φ) +
∑

(i,j)∈E
ϕi,j(yi, yj ;w

ϕ) (1)

= 〈w,ψ(x, y)〉 (2)

With φi(yi) as the unary term and ϕ(i,j)(yi, yj) as the
pairwise term. The parameters to learn are wφ and wϕ.

3) Max-margin structured learning: The max-margin struc-
tured learning framework optimizes discriminatively the
weights of the energy function described in Equation (1).
Learning the weight parameters of Equation (1) does not
scale well because the computational cost is quadratic. The
authors of [9] propose an efficient method to solve this issue
using Block-Coordinate algorithm which allows to break down
the optimization problem into simpler linear subproblems.
The SSVM framework finds model weights that maximize
the energy of any labeling y with respect to the one of the
groundtruth yn by the largest margin ∆(y, yn)

w∗ = arg min
1

2
||w||2 +

C

N

n∑

n=1

l(xn, yn, w) (3)

with

l(xn, yn, w) = max
y∈Y

∆(yn, y)− g(xn, yn, w) + g(xn, y, w)

(4)
g(x, y, w) = 〈w,ϕ(x, y)〉 (5)

where C is a penalized hyperparameter and ∆(y, yn) is a
loss function that measures the error of predicting y knowing
the real configuration is yn. Several loss functions have been
defined for the max-margin structured problem. In this work
we use the common Hamming loss which aims at penalizing
wrong labeled nodes equally and is defined by ∆(y, yn) =
1

|V|
∑
i∈V [yi 6= yni ]
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4) Predicting a label: For each superpixel of an unknown
image we consider the local graph of neighbors inside a given
radius. The SSVM framework predicts the labels of all the
nodes in the graph of local interactions. One approach could
be to keep only the label of the region of interest and using it
to predict the label of the superpixels. In our approach we also
predict the labels of surrounding superpixels, so for the whole
image we get several predicted labels for each superpixel. We
exploit this by setting up a voting procedure where for each
superpixel we accumulate the votes of all the neighbors.

III. EXPERIMENTS

A. Setup

The methods are tested on the ISPRS 2D Semantic Labeling
Dataset [10]. We use part of the Vaihingen data, consisting of
16 IR-R-G orthoimages with pixel-level ground truth. We asset
the quality of the classification with the ground truth.

We split this dataset as follows : tiles 1, 5, 7, 11, 17, 23,26,
28, 34 and 37 form the training set, while tiles 13, 21 and
30 form the validation set and tiles 3, 15 and 32 form the
testing set. Note that the “clutter” class is not represented in
the testing set. This is justified by the fact that the ISPRS
evaluation procedure does not take this class into account. We
evaluate the performances of the various algorithms using f1-
score for each category in the dataset.

B. Results

Table I shows a quantitative evaluation of the algorithms for
semantic labeling. The structural context method gets the best
overall classification rate and outperforms the baseline on 3
categories. This method is efficient to model the interactions
of the superpixels of large areas like impervious surfaces
or buildings. Objects with many superpixels are more likely
to vote for the right label than objects with few supepixels
because the error is divided between the neighbors. The poor
performances of the model on cars is a consequence of the
voting method. The superpixels of roads are more likely to
consider a neighbor as a road than a car. The error is then
propagated by the neighbors which lead the model to make a
great number of bad predictions.

Figures 2 and 4 show the classification maps produced by
the algorithms on tile 3 and 32. Figure 3 shows a zoom on a
particular area of tile 3: the baseline model often confuses solar
panels with cars while our structural model is able to correct
this type of errors. Table II show how to read the classification
maps: the colors in the table correspond to the colors in the
classification maps. These results show that using structural
context produces semantic maps with less noise caused by
misclassifications of superpixels: it allows smart regularization
of object borders.

IV. CONCLUSION

In the paper we described a context model for semantic
labeling in aerial images. We use local graphs of interactions
between superpixels of an image to model contextual relations.
We use an efficient SSVM framework to learn a model of

TABLE I: f1-score for each category in the dataset. The last
column is the multiclass accuracy score.

Imperv. Build. Veget. Tree Cars Overall
Model f1-score Acc.

Baseline 32 81.26 81.58 62.71 77.88 40.10 76.33
Baseline 64 81.13 82.36 62.46 76.13 41.03 75.98

Structural Context 82.00 82.40 58.18 78.38 32.46 78.36

context with more than 100k training samples. We have shown
it increases the classification performances on the challenging
ISPRS dataset for urban semantic labeling.

V. ACKNOWLEDGMENT

The Vaihingen dataset was provided by the German So-
ciety for Photogrammetry, Remote Sensing and Geoinfor-
mation (DGPF) (http://www2.isprs.org/commissions/comm3/
wg4/semantic-labeling.html).

REFERENCES

[1] D. J. Marceau, P. J. Howarth, J.-M. M. Dubois, and D. J. Gratton, “Eval-
uation Of The Grey-level Co-occurrence Matrix Method For Land-cover
Classification Using Spot Imagery,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 28, no. 4, pp. 513–519, 1990.

[2] S. Xu, T. Fang, D. Li, and S. Wang, “Object classification of aerial im-
ages with bag-of-visual words,” IEEE Geoscience and Remote Sensing
Letters, vol. 7, no. 2, pp. 366–370, 2010.

[3] A. A. Popescu, I. Gavat, and M. Datcu, “Contextual Descriptors for
Scene Classes in Very High Resolution SAR Images,” IEEE Geoscience
and Remote Sensing Letters, vol. 9, pp. 80–84, jan 2012.

[4] G. Moser, S. B. Serpico, and J. A. Benediktsson, “Land-Cover Mapping
by Markov Modeling of Spatial-Contextual Information in Very-High-
Resolution Remote Sensing Images,” Proceedings of the IEEE, vol. 101,
pp. 631–651, mar 2013.

[5] A. Lagrange, B. Le Saux, A. Beaupere, A. Boulch, A. Chan-Hon-
Tong, S. Herbin, H. Randrianarivo, and M. Ferecatu, “Benchmarking
classification of earth-observation data: from learning explicit features to
convolutional networks,” in IEEE International Geoscience and Remote
Sensing Symposium (Invited talk in the special session on Data Fusion),
2015.

[6] H. Randrianarivo, B. Le Saux, and M. Ferecatu, “Urban structure detec-
tion with deformable part-based models,” in International Geoscience
and Remote Sensing Symposium, 2013.

[7] A. Krizhevsky, I. Sulskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” Advances in Neural
Information and Processing Systems (NIPS), pp. 1–9, 2012.

[8] R. Achanta, A. Shaji, and K. Smith, “SLIC Superpixels Compared to
State-of-the-Art Superpixel Methods,” Pattern Analysis and . . . , vol. 34,
no. 11, pp. 2274–2281, 2012.

[9] S. Lacoste-julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-
Coordinate Frank-Wolfe Optimization for Structural SVMs,” Interna-
tional conference on Machine learning, vol. 28, 2013.

[10] M. Gerke, J. Jung, C. Baillard, S. Benitez, G. Sohn, F. Rottensteiner, and
U. Breitkopf, “the Isprs Benchmark on Urban Object Classification and
3D Building Reconstruction,” ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. I-3, no. September,
pp. 293–298, 2012.

TABLE II: Ground truth classes for semantic labeling for the
ISPRS dataset described in section III-A.

Impervious Building Low Tree Car Clutter
surface vegetation
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(a) Original image (b) Groundtruth (c) Baseline 32× 32 (d) Baseline 64× 64 (e) Structural context

Fig. 2: Semantic maps predicted for the tile 3

(a) Groundtruth (b) Groundtruth (c) Baseline 32× 32 (d) Baseline 64× 64 (e) Structural context

Fig. 3: Zoom on the tile 3. We observe that our method produces semantic maps with less noise than the baseline.

(a) Groundtruth (b) Groundtruth (c) Baseline 32× 32 (d) Baseline 64× 64 (e) Structural context

Fig. 4: Semantic maps predicted for the tile 32
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